The System

V 2 sec

SYS OFF

SYS ON

STOPP

Central Station, Handheld, StEin, Software (Partner)

ZIMO BASISGERÄT MX10

ALE - DIGITAL COMMAND STATION

STAMO -

ZIMO System Overview April 2018

www.nevadahobbydistributors.com

MENÜ

Decoder Link (SUSI)*

BAB

NHD

ZIMO CAN

+ Sniffer

Rev (Com 0.11 A 22:29:45

26 km

XNET

+ CAN-2

www.zimo.at

ZIMC

ELEKTRONIK

ZIMO

Content ZIMO System Overview

The ZIMO Central Station	1	Page	3
First Operation, Products, Block schematics	, 1	Page	4
MX10 "the big" and MX10EC the Economy central station	l age 10 age 12	Page	6
The handheld MX32Operations & GUI (Graphical User Interface)"RüF" & Engine Database, Help, MX32 CONFPaSTOP & OFF, External Control & Take OverPaMX32 Kabel & Funk, Service Mode & Operational ModeSwitchesm Signals, and track Segment	I age 15 age 16 age 17 age 18 age 19	Page	14
Stationär-Einrichtungs-Module StEin HLU, RailCom, Keys-Prozedures, "The 7 Steps" Paramter-Sheets as an Aid for configuration	I age 22 age 22	Page	20
Driving and Switching at the Computer ZIMO Partner Products ESTWGJ Page STP Page WinDigipet Page	ige 26 ige 27 ge 27	Page	26
Staff Impressum	1	Page	28

Decoders are not covered in this system catalog but int he seperate Decoder Catalog ("The Green").

Inside the central station MX10: The PCB (View from top)

The StEin-PVB (Top view without the acrylic cover)

2

The ZIMO Central Station

... developped and manufacturer in Vienna

Ifull PCB assembly at location,, just like the decoders Complete system integration and quality testing is done here as well, inclduing the repairs

The ZIMO Central Station . . is High Tech for model railroading.

Viewing the inside (left pictures) shows the sophisticated electronic; The Central Station MX10 uses more than 1,300 components with about 10 highly integrated components (processors, memory, etc.) and 10 clocked voltage converters for driving voltage and internal use. Despite the high end specifications of the MX10 (track current up to 20 A) is the size of the unit in no correlation to its power. This is giving testimony to the high-end technology utilized. Yes ZIMO also considers applications were high currents could lead to damages (N, HOe, TT). If the system is properly configured then short circuits leads to less sparks and branding marks compared to many 3 A only systems.

The ZIMO Central System

The ZIMO Central System ...

. offers not only 20 A or 12 A constant current (depends on system) . . means connectivity

but also sophisticated processor and software implementations in the MX10 and the MX32 hand held, leading to high quality of usability allowing the simultaneous operations of a large number of trains, as well as supporting the large ZIMO variety of capabilities.

The central station does not only communicate via the ZIMO own CAN-Bus, but also via XpresssNet and LocoNet (prepared), as well USB and LAN with outside components. Fully configured control units can be reached via 3 RF systems.

All central stations also have

a port for USB sticks. These

also be used for loading of

languages, Pictures,

Databases, and

client port).

enable auto-updates, but can

configurations. Alternatively

this can also be used instead

of a direct connection to the

computer via LAN (Ethernet)

or USB-cable (at the USB

Front of the ZIMO Production facilities (inside view in the Decoder catalog)

The ZIMO Central Station ...

... is not only Central station (MX10) and hand held (MX32),

but also the foundation for StEin, the control and monitoring functionality for switches, signals, etc. And in particular enabling track segmentation with occupation control and train numbering recognition (HLU)

The ZIMO Central Station . . .

... is even in minimal configuration well equipped.

the first "Booster" is integrated into the central stations (Track 2), also the RF module needed to communicate with the wireless hand helds, connection to WLAN, and an integrated decoder update and sound loading unit, a stationary sound generator and more.

First activty of a ZIMO System

The ZIMO System is typically deliverd as a "Starterset":

1 central station MX10 or MX10EC, 1 handheld MX32 (cable) or MX32FU (RF and cable), 1 power supply 30 V / 240 VA or 640 VA, several connector plugsr, CAN cable, power cord .

IThe first step is top make the necessary connections:

- ★ The MX32 handheld will be connected with the CAN cable to the MX10 ("ZIMO CAN" port) (NOTE: DON'T use the cable with the blue plug) and
- ★ the track output are connected to "Schiene 1" or "Schiene 2" of the MX10. Schiene 2 can fucntion as a 2 main track or as programming track for "Service mode".
- ★ The power supplyuwill be connected to the MX10 via the green plug to the DC port.
- ★ The MX10 powers on automatically, as soon as connected to power supply. During booting sequence the screen is initially red then blue.
- ★ The handheld MX32 boots also automatically.
- ★ A new MX32 shows FAHR EIN on the screen. Now you can enter an engine address and an optional name.
- ★ The engine will be activated with pressing the F-Key: The MX32 display shows now *FAHR* Mode. Often the Speedometer and the function keys are displayed, but you can reconfigure the display via the touch screen.
- ★ Now the engine can be controlled via the slider and the R- and F-Keys, etc.

The main components

The ZIMO Central Station consits fo the folling main components...

- the *central Station MX10* which is equipped with the internal MiWi RF module for wireless communication with with MX32FU handhelds, and is fully equipped to operate up to 20 A (500 W respectively) at the track outputs. The system can be configured for smaller applications (with less power requirements) and by choosing a smaller power supply.
- You can choose between two different power supplies, the small NG200 with 240 W (30V, 8A) and the big unit NG600 with 640 W (30V, 20A) output power. The effective track voltage is adjustable with highly effective controllers inside the MX10 (>90% efficiency). This leads typically to much higher current availability than the power supply supplies (approximately 1.5x with lower track voltage.
- The hand held options include the cabled MX32 and the wireless MX32FU which can be also utilized in mixed configurations. The MX32FU can be also connected via cable during which time the battery will be recharged.

- Starting with Q 2 2018) exist two version of the track segmentation modul "StEin"; the large one the STEIN88V offers all connections for switches, signals, speakers, and the important track segment connections (for Occupancy Information, HLU, RailCom-message-acceptance, etc.) Many different variations of StEin variations for specific applications are planned (ie. only for track segmentation but with more connections)
- The old modules MX8, MX9 for accessories and track segmentation continue to be supported (and can be also be produced upon request). Both were components of the older generation of ZIMO systems.

... and several ADDON- and Accesory components:

- The MX10AVP offers easy access to the MX10 interfaces, especially with new components (MX32, StEin) and old components (MX2, MX31, MX8, MX9) shall be operated simultaneously. In this case two different CAN-Buses are utilized
- CAN-Bus ready made cables, CAN-Bus do-it-yourself materials, several special cables and plugs, antennas, and WLAN-routers, etc.

A "Big System"

Description for the block diagram on the reverse side

The configuration on the following double pages is a sample application of a larger installation, which might never be used in this was, yet demonstrates the full ZIMO capabilities

In this sample you find all current (April 2018) ZIMO systems products and some important other products, but no ZIMO products from previous generations, albeit they could be utilized as well.

In this example are 2 MX10 central stations with one being the Central station (on the right) and the other one being a booster (on the left). The booster receives the DCC signal via two additional pins from the CAN-Bus cable (normally 6 pin but here 8 pin), and reproduces it for its own track outputs. A mutlitude of products can be used as input units (handhelds, controllers, and speed regulators):

- ZIMO wired and wireless handhelds MX32, MX32FU (current generation like the MX10)
- ZIMO wired and wireless handhelds MX31, MX31FU (old generation)
- (with limitations) ZIMO handhelds MX2, MX21 old generation
- Roco (red) Lokmaus at the XPressNet cable
- Roco WLAN (black) Lokmaus via Router
- Massoth Dimax Navigator via RF connected to XPressNet cable

- Roco App onSmartphone or App via Router
- Computer-controllers inside switching programs or Decoder-configurationprograms

The LAN port of the MX10 connects predominantly to WLAN routers and computers. The 8-pol CAN-bus server the booster (or multiple boosters) as well as the track segmentation module **StEin** (theoretically up to 100 units, but above a certain limit additional power source is required). Additionally they receive power from a ring cable (Drive power, accessory power - which could also come from independent power supplies). The important connections are 8 outputs for track segments, 16 logic inputs (for contact tracks, light sensors, and control contacts, etc.), 16 output for (predominantly) 8 switches, 2 speaker outputs for the build in sound module. Add-on PCBs expand the StEin's capabilities (ie. servo control) and more cost efficient. Especially important is the planned extension module "Track Segmentation" with will add to the 8 main output 8 additional outputs which establishes a very cost effective system capability.

Up to 25 signal PCBs (for each 16 LEDs, divided between 2 and 8 signals) can be connected to the **I²C-Bus** of StEin. They control the On/Off and Up/Down lighting, and blink effects of the signal lights.

MX10 The Big Central Station

- ▶ 12 A + 8 A constant current for two outputs for a total of 20 A,
- ▶ Voltage / trip current / trip timing can be finely adjusted, short cicruit protection for RF,
- ▶ RailCom precision detector with Oversampling to measure also weaker signals
- ▶ Decoder Software-Update and loading of sound projects directly from the central station
- ▶ Communication with system blocks via CAN Bus or via "MiWi" if components have this feature,
- > ZIMO handhelds to CAN-Buchse, XPressNet[®] handhelds to XNET-Buchse connectable,
- Smartphone & Tablet Apps, as well as connections to Computer via LAN/WLAN.

The technical Data

Externe **Netzgeräte** mit galvanisch getrennten Ausgängen 25 - 35 V = Netzgerät für mittlere Anlagen, bis ca. 10 A Schienenstrom 240 Watt Netzgerät für Betrieb auf voller Leistung, bis 20 A Schienenstrom... 600 Watt

usgang Schiene 1 - Fahrspannung
usgang Schiene 2 - Fahrspannung

DC-Ausgang 30 V (gleichzeitig Versorgung im CAN Bus Kabel)4 ADC-Ausgang 12 V (gleichzeitig Versorgung an XNET und Loconet Steckern2 ALED-Ausgänge (6 Pins auf 2 x 8 pol. Stiftleiste)25 mAABA-Eingänge (8 Pins auf 2 x 8 pol. Stiftleiste) - Schaltschwelle3 VAudio-Ausgang (Klinkenbuchse 2,5 mm)Line-out

MX10EC The new "Economy" central station

The **MX10EC** is based 100% on the HW and SW of the MX10, but it saves the track output 2.

Yet the MX10EC is a real Highperformance-Central Station: up to 12 A.

MX10EC is missing (compared to the MX10): build-in Sound-Generator, some ABA-Pins, USB-client plug (MX10EC has "only" LAN/Ethernet), Loconet-interfaces, Outputs for support voltage. Elements needed less often, albeit ery useful for big layouts

RailCom Detektor Schiene 1 - messbare Mindestamplitude des RailCom-Signals	2 mA
- Sample rate	0 kHz
Detektor Schiene 2 - messbare Mindestamplitude des RailCom-Signals	2 mA
- Sample rate	0 kHz

ZIMO CAN-Bus 1 (ZIMO CAN Stecker vorne und hinten)
ZIMO CAN-Bus 2 (zusätzliche Pins am XNET Stecker)
XNET
Loconet (derzeit nur Hardware-mäßig vorbereitet)
USB device (client) Schnittstelle 1 Mbit/s USB 2.0 host Schnittstelle (für USB Stick und zukünftige Anwendungen) 1 Mbit/s
LAN (Ethernet, auch Anschluss des W-LAN Router) 10 Mbit/s, 5000 Datenpakete/sec
Mi-Wi Netzwerk (Derivat des ZigBee Standards, 2,4 GHz) ca. 20 kbit/s
DRAM und SRAM (Arbeitsspeicher)

▶ Other capabilities like MX10 !

Der Drehknopf im Normalbetrieb (blaues Display)

Drehen, hin-und-her \rightarrow VOLT & AMP Haupteinstellungen: Spannungen, Stromschwellen für die Schienenausgänge Lang-Drücken 2 sec → Sammelstopp SSP und Betriebszustand STOPP & AUS zur weiteren Auswahl (Drücken 1 sec) \rightarrow Aufheben Sammelstopp, zurück in den Normalbetrieb (oder zuvor aktiven Betriebszustand) Lang-Drücken 4 sec \rightarrow SYSTEM OFF (Schiene 1, 2 AUS, Fahrpult-Versorgung AUS, Display AUS, usw.) (Drücken 1 sec) → SYSTEM ON

USB (Host) Buchse

Steckplatz für einen USB-Stick. für MX10 Selbst-Update und Decoder-Software-Update und Decoder-Sound-Laden.

Host

Buchsen für ZIMO CAN und XNET

CAN Bus zur Verbindung mit ZIMO Fahrpulten und Modulen.

XNET Buchse zur Verbindung mit Roco Lokmäusen und anderen Fremdhandreglern (DiMax. LH, u.a.); zusätzlich auf Buchse: zweiter ZIMO CAN 2.0 Bus.

STOPP SSP aufheben

sec SYS OFF DIGITALZENTRALE - DIGITAL COMMAND STATION

3 ZIMO CAN BAB MENÜ Decoder Link (SUSI)

Die 3 Tasten des MX10

2 sec

SYS ON

Vorderseite

Taste 1 \rightarrow zur Einrichtung und Überwachung der automatischen Betriebsabläufe BAB

Taste $2 \rightarrow$ zum Hauptmenü des MX10

Taste 3 \rightarrow zum "BASECAB" (Steuerung von Fahrzeugen direkt vom MX10 aus)

im STOPP & AUS Zustand:

- Taste 1 \rightarrow Wiedereinschalten oder Ausschalten oder Auf-Sammelstopp-Setzen des Schienenausgangs 1
- Taste 2 → Wiedereinschalten oder Ausschalten oder Auf-Sammelstopp-Setzen des Schienenausgangs 2

wenn USB-Stick mit entsprechenden Dateien angesteckt:

- Taste 1 \rightarrow Starten Decoder-Update
- Taste $2 \rightarrow$ Starten Decoder-Sound-Laden

SUSI Stecker

+ Sniffer

Zum schnellen Sound-Laden über die SUSI Schnittstelle.

XNET

+ CAN-2

- Doppelschraubklemme "Schiene 1" meistens Hauptstrecke
- Doppelschraubklemme "Schiene 2" zweiter Stromkreis (z.B. Nebenstrecke, Zubehörartikel), auch Programmiergleis "Digitalstrom" (DCC, MM, ev. in Zukunft weitere Gleisformate wie mfx, selectrix)
- Ausgänge Schiene 1, Schiene 2 bezüglich Spannung, Stromgrenzen, Abschaltezeit, usw. unabhängig voneinander einzustellen, je nach Konfiguration und Situation gleiches oder unterschiedliches Datensignal.
- 3-fach Schraubklemme "DC out " S1 (zur Schiene 1), MASSE, S2 (zur Schiene 2) zur Versorgung der Stationär-Einrichtungs-Module StEin, Gleisabschnitts- und Kehrschleifen-Module, u.a. (im MX10 selbst: der DCC-Endstufen).

Audio-Buchse (Line-out)

Zur verstärkten Wiedergabe von Sounds, die primär am internen Lautsprecher zu hören sind.

USB (Device) Buchse

Rückseite

USB-Verbindung zum Computer, für Anwendungen wie Stellwerks- und Konfigurations-Software.

11

Menüs, Einstellungen, Systemüberwachung

Verfügung, der auch vom USB-Stick gefüllt werden

USB-Schnittstelle).

kann (oder wahlweise direkt vom Computer über die

Der "Normalbildschirm"

12

ABA Ein-/Ausgänge, Anzeige der Zus der insgesamt 14 Anschlüsse.	stände Schienensignal-Statistik (Anzahl der ausgesandten Befehlspakete pro sec); xx DCC = nur DCC Pakete	, Par	Anwendung als Programmiergleis (SERV) können die rameter für die Stromversorgung eingestellt werden.	1: Hochfahrstrom 1: Hochfahrzeit 1: UES Schwelle 1: UES Abschaltzeit	5.0) 0.0: 5.0. 0.2
Spannung und Strom am Eingang "DC in", also des Netzgerätes, welches das MX10 und damit die ge- samte Anlage versorgt ("Primärversorgung"). Spannung und Strom am Aus- gang "Schiene-1" (DC-Ausgang S1 ir Spannung und Strom am Aus- gang "Schiene-2" (DC-Ausgang S2 ir	1.5.4 32 DCC xx MM = nur MM Pakete. 1.0.4 0 RCom xx/yy D/M = DCC und MM 4.45 37* CAN 7 RailCom-Statistik (Anzahl der empfangenen Nachrichten als Antworten auf DCC-Befehle). CAN-Bus - Statistik (Anzahl der CAN Pakete); CAN-Bus - Statistik (Anzahl der CAN Pakete); CAN xxx E = Anzahl der CAN Pakete pro sec C xxx E yy% = Anzahl und Fehler-Prozentsatz XNET und LAN Verkehr alternierend angezeigt kludiert).	 Normalbetrieb STOPP & AUS VOLT & AMP HAUPT VOLT & AMP DETAIL MX10 Config (BaseCab FAHR) (BaseCab FAHR) (BaseCab OP PROG) (BaseCab SERV ADR) (BaseCab SERV PROG) (ZIMO Decoder Update) (ZIMO Deco Sound-Laden) DCC SIGNAL Einstellung 	Das Hauptmenü des MX10 Das MX10 ist eine vielseitige und komplexe Digitalzentrale, daher gibt es zahlreiche Einstellmög- lichkeiten und Überwachungs- prozeduren, die im Hauptmenü aufgerufen werden können. Natürlich betreffen den einzelnen Anwender nur wenige (oder auch gar keine) davon, aber das Gerät ist für alle Fälle gerüstet.	1: UES Adaptiv 1: UES Adaptivzeit 1: UES Tol-Strom 1: UES Toleranzzeit 1: Funkenlöschung 2: Fahrspannung 1: Hochfahrstrom 2: Hochfahrzeit 2: UES Schwelle 2: UES Adaptivzeit 2: UES Adaptivzeit 2: UES Tol. Strom	0.0) 0.0) 0.0) 0.0) AU 6.0 3.0 0.0 3.0 0.0 0.0 0.0 0.0
	Die File-Liste des angesteckten USB-Sticks	DCC SERV PROG Einstell (MMy SIGNAL Einstellung)	28V 3.1A 2.5 V AUS T1: EIN	2: UES Toleranzzeit 2: Funkenlöschung	0.0 AU
USB Disk: • System Upd&Daten ObjektDB: Fahrzeuge ObjektDB: Decoder Decoder SW&Sound Fonts laden	Vom USB-Stick aus wird vor allem das Selbst- Update des MX10 durchgeführt. Aber in das MX10 wird nicht nur die Betriebs-Software geladen, sondern es werden auch zahlreiche Daten abgelegt, die von den verbundenen Geräten (hauptsächlich den Fahrpulten) verwendet werden, wie Funktionssymbole. Objekt-Datenbanken, u.a.	ABA In/Out Monitor+Conf Bus Config+Monitor PC Config+Monitor ObjektDB Fahrzeuge (ObjektDB Traktion) ObjektDB Zubehör BAB Monitor+Start	19,9 V 4,48 T2: SSP 28V 8,7A 22,8 V SSP 19,9 V 4,47 T2: SSP 28V 3,1A 2,6 V UES T1: EIN	SERV: Fahrspannung : SERV: UES Schwelle SERV: Abschalt Zeit Upd: Fahrspannung Upd: UES Schwelle	12.01 0.4) 0.2
Funkprozessor Update	Für das Software-Update von Decodern und das Laden von Sound-Projekten steht ein eigener File-Speicher zur	ObjektDB Sound's (ObjektDB DecoderFW) (ObjektDB SoundProjekt)	19,9 V 4,48 T2: SSP "S Hier können die beiden	TOPP & AUS"	

(ObjektDB: Labels)

Debug Functions

Data Clear

Hier können die beiden Gleisausgänge unabhängig voneinander auf Sammelstopp (SSP) oder AUS gesetzt werden; hier kommt auch die Kurzschluss (= UES) Meldung.

Die "VOLT & AMP" Liste

16.0V

Jeweils getrennt für die beiden Schienengusgänge und für die **F1: Fahrspannung**

MX10 Konfiguration

Eine hochwertige Digitalzentrale wie das MX10 kann bis zu einem gewissen Grad durchaus als "black box" betrieben werden, ohne dass sich der Anweder mit der "Systemkonfiguration" beschäftigen muss. Zu Beginn des Einsatzes ist das sogar sehr zu empfehlen, und manchmal wird es auch für lange Zeit oder dauerhaft so bleiben.

Aber mit zunehmender Komplexität der Anwendung kann der Bedarf wachsen, individuelle Einstellungen vorzunehmen. Das MX10 bietet fast alle erdenklichen Möglichkeiten dazu.

Sprache:	Deutsch
Funk Kanal:	14
Anlauf Speed: Anlauf MAN: Anlauf Fu: DrehK- lang: Boo UE Leit: Sync Mode: Mastr/Boostr: Sniffer Inp.:	Restore Restore SSP 1+2 SSP 1+2 Getrennt Master
Adr Analog:	0
Adr MX10 Sour	1d: 16313
Adr MX10 BAB	: 16312
Date/Time Versions Info Info/Statistik	

Fahrzeug-Datenbank & Steuersignal-Aussendezyklus

Das MX10 erlaubt eine tiefe Einsicht was und wie gesteuert wird; Vorkehrungen zum Kontrollieren und Eingreifen sind sinnvoll, weil zum Unterschied zu vielen Systemen des Mitbewerbs die Anzahl der aktiven Adressen NICHT auf etwa 32 oder 64 eingeschränkt ist, und das Daten-Refresh NICHT nach wenigen Minuten eingestellt wird.

Im ZIMO System sind bis zu 1000 Fahrzeugadressen gleichzeitig aktiv; d.h. dass die zugehörigen Fahrdaten in den Decodern trotz DCC-gemäß begrenzter Datenrate auf der Schiene aufgefrischt werden sollen. Dafür gibt es ein komplexes Schema von Prioritäten, welches natürlich auch gewährleisten muss, dass Änderungen der Geschwindigkeit oder von Funktionen ohne Verzug zur Ausführung gelangen, zusätzlich aber auch, dass alle Fahrzeuge ausreichend Gelegenheit für Rückmeldungen erhalten (beispielsweise damit der jeweilige RailCom-Tacho im Bediengerät aktuell gehalten wird).

Durch Umstellung der **Sprache** kann die Darstellung sofort entsprechend angepasst werden. Für eventuell fehlende Texte dient Deutsch als Ersatz.

Eine Umstellung der Default **MiWi Kanalnummer** für den 2,4 GHz "MiWi" Funk zwischen MX10 und ZIMO Fahrpulten MX32FU und MX33FU kann zweckmäßig sein, um Einschränkungen der Verbindungsqualität durch fremde Netze (WLAN, Funkmäuse, u.a.) auszuweichen. Den Fahrpulten wird die eingestellte Kanalnummer bei der Registrierung im System (wenn über CAN-Bus Kabel mit MX10 verbunden) übermittelt.

Mit "**Anlauf** … " wird festgelegt, ob nach dem Wieder-Einschalten des Systems alle Züge (Fahrzeug-Decoder) und/oder Weichen (Zubehör-Decoder) in den Zustand versetzt werden sollen, in welchem sie sich beim Ausschalten befunden haben. Eingestellt werden kann "Restore" (dies ist Default), oder "Clear", (also Geschwindigkeit null, Funktionen aus, usw.), getrennt für die Geschwindigkeiten (samt Richtung), die MAN Bits, die Funktionen und die Zubehör-Stellungen (Weichen, Signale).

Die **"Boo UE Leitung"** auf der ZIMO CAN-Buchse an der Rückseite des MX10 ist an sich für die Kurzschlussmeldung nach NMRA-Norm von angeschlossenen Boostern vorgesehen. Sie kann jedoch als allgemeiner Eingang für einen externen Nothalt verwendet werden.

Für den **MX10 Sound** (interner Lautsprecher und Buchse) und für **BABs** (Betriebsabläufe) können jeweils **virtuelle Adressen** festgelegt werden, womit dann ein Aufruf mittels angeschlossener Fahrpulte möglich ist.

► 505		- 0 🔺
2040		0 🔺
16311	MX10 Sound	- 0 🛦

	2040	
	Fahrzeug L	öschen
	Format:	DCC, 128
100	Fu * 🖷	* * *
258	Fu * *	x x 📕
505	F ××	× × ×

DCC & SERV PROG

Einstellungen

In den meisten Fällen müssen die hier aufgeführten Werte niemals modifiziert werden, vor allem nicht wenn ausschließlich moderne Decoder in Fahrzeugen und Zubehörartikeln verwendet werden.

Manchmal kann es aber doch nützlich sein, Dinge wie das Bit-Timing anzupassen. Insbesondere im Bereich des SERV PROG (Program-mieren am Programmiergleis) gibt es spezielle Anforderungen, wie etwa die Methode der davor/danach vorzunehmenden Spannungsunterbrechung.

AUS davor	Nei	п
AUS danach	Nei	п
ACK Stram	20	mA
ACK Dauer	4	mS
SERV: Preamble	30	Bits
SERV: Relais	Nein	ABA
SERV: Relais	Nein	ABA

The ZIMO Handheld ...

Entsprechend der langjährigen ZIMO Designphilosophie erlaubt die Gehäuseform des MX32 die wahlweise Verwendung als Tischgerät oder als Walk-around Handregler. Charakteristisch sind die gemäßigte Pultneigung und eine schlanke, leicht gekrümmte Form. Der Touch-Screen mit 2,4 Zoll Diagonale, kombiniert mit "echten" Tasten und Schieberegler, sind die Grundlage für die Funktionalität und Bedienerfreundlichkeit des Gerätes und des gesamten Systems.

Eine Vielfalt von Darstellungen am Bildschirm (siehe nächste Seiten) und von grafischen Elementen (Lokbilder, Funktionssymbole, Tachoscheiben, ...) dient der komfortablen Steuerung und Überwachung der Züge, der Programmierung von Decodern, dem Schalten von Signalen und Weichen, der Organisation des Gesamtsystems, der Fuhrpark-Verwaltung (Objekt-Datenbank, Rückholspeicher), usw.

Eine eigene USB (host) - Schnittstelle für USB-Sticks wird zum Selbst-Update genutzt, aber auch zum Einbringen zusätzlicher Lokbilder, Bedienungssprachen, Funktionssymbolen, CV-Sets, oder ganzer konfigurierter Fahrzeug-Sammlungen.

Das **Funkfahrpult MX32FU** enthält ein Mi-Wi Funkmodul (2,4 GHz, ähnlich ZigBee) und einen Akku (für ca. 5 Stunden Betrieb), und ist sowohl für Funkbetrieb als auch für Kabelbetrieb geeignet. Mit Kabel wird auch gleichzeitig der Akku geladen. "Oberer Balken" (die Kopfzeile des Bildschirms) Aktueller Betriebszustand *FAHR*; Spannung & Strom auf der Schiene "Kommunikationspunkt" zur Überwachung des Datenverkehrs mit der Zentrale; RailCom Logo wenn Daten empfangen werden; Akku-Anzeige; Uhr (Welt- oder Modellbahnzeit).

Lok-Bild (wenn vorhanden); durch Touch in größere Darstellung umschaltbar.

Lok-Name, Adresse, Datenformat soweit vorhanden.

Funktions-Symbole

in Anordnung der Zifferntasten, beschreiben deren aktuelle Bedeutung und sind wahlweise per Taste oder Touch zu betätigen. Im Bild ist die Darstellungsform "Black style".

Tacho mit Echtgeschwindigkeitsanzeige aus RailCom Rückmeldung durch Touch Umwandeln in kleinen Digital-Tacho (dafür großes Lokbild)

Softkeys M (= Menü), I, II, II aktuelle Bedeutung oberhalb im Display.

Fahrbalken

repräsentiert den Schieberegler, zeigt u.a. aktuelle Fahrstufen, Übernahme-Stellungen, Zugbeeinflussung.

Ziffern- und Funktionstasten-Block, auch SMS-Tastatur zur Texteingabe

Das Fahrpult MX32 in typischem FAHR - Betrieb

Aussende-Rückmeldestatistik, QoS-Symbol

ZIMO "Ost-West":

Seit die Mollbahn digital fährt, ist die Fahrtrichtung auf das Fahrzeug bezogen (nicht auf die Anlage): , vorwärts" ist beispielsweise "Rauchfang voraus".

ZIMO hat mit "Ost-West" ein Verfahren entwickelt, das jederzeit erlaubt, ohne Kenntnis der Aufgleisungsrichtung korrekt loszufahren, über beide Richtungssysteme (Vorwärts-rückwärts, Ost-West)" zu informieren, und das alles OHNE Verlust der gewohnten Handhabung (Richtungsumschaltung).

 Scroll-Rad im FAHR - Betrieb: Geschwindigkeits-Feinregelung (+/- 10 Fahrstufen), oder Regler für zugeordnete Parameter (z.B. Lautstärke)
 Wipp-Schalter (oberhalb des Scroll-Rades) alternative Möglichkeit für Fahrzeugwechsel, oder Umschalten zwischen Parametern.
 Scroll-Rad in FAHR mit sichtbarem RüF: Scrollen zwischen den Adressen im RüF,
 Wipp-Schalter Wechseln der Darstellungsebene.
 Scroll-Rad beim Programmieren SERV, OP

Scrollen zwischen den Zeilen der CV-Liste, Wipp-Schalter zum Inc/Dec eines CV-Wertes.

R-Taste: Fahrtrichtung				
S-Taste: Stopp, SSP, AUS	F-Taste			
MN (manuell) blink rot: MAN ist aktiv				
RG (Rangieren) gelb: Halb- bzw.				
1/3-Geschwindigkeit)	TP-Tast			
A-Taste: Auswählen, Bestätigen, "ja", aus	11-1050			
FAHR zur Adresseingabe FAHR EIN	W-Taste			
E-Taste: End, ESCape, E-Bildschirm	C-Taste			

Drive operation & "GUI" (Graphical User Interface)

ADR BILD

Bildschirm FAHR FIN

Eintippen einer neuen Adresse und (optional) des Namens: oder Auswahl eines bereits registrierten Fahrzeugs aus der Objekt-Datenbank (Inhalt unten aelistet).

F-Taste \rightarrow FAHR

Bay Mallet 2044 pcc

Bildschirm FAHR

Steuern des aktiven Fahrzeugs mit Schieberegler, Richtunastaste. Funktionstasten (d.s. die Zifferntasten des Fahrpults). Der Tacho zeiat ie nach Decoder eine berechnete Geschwindigkeit oder die "echte" (= die durch RailCom aemeldete).

Bildschirm ADR TACHO

15

Zur Verfeinerung der GUI ("Graphical User Interface"): Auswahl einer Tachoscheibe (div. Farben, usw.), Zuordnuna Geschwindiakeit zu Fahrstufen (für den Fall ohne RailCom). Anzeigedetails.

Bildschirm ADR FUSY

Zur Verfeinerung der GUI ("Graphical User Interface"):

Auswahl eines passenden Funktionssymbols zu iedem der Funktionen F0 ... F28 sowie der Dauer/Moment Wirkung der jeweiligen Taste.

25 kmh

D/R: 81/ 0

Bildschirm FAHR mit RailCom-Rückmeldungen (Kennfarbe magenta):

Die gemessene "echte" Geschwindigkeit wird aus dem Fahrzeug zurückgemeldet: außerdem wird die Quote der erfolgreichen DCC Pakete / RailCom Quittungen angezeigt.

A 00.0 A

3256

Bildschirm ADR BILD

Zur Verfeinerung der GUI ("Graphical User Interface"):

Auswahl des richtigen Bilds aus der internen Bilder-Datenbank zur optionalen Darstellung am FAHR Bildschirm. Suche per Durchblättern oder Filter auf Attribute (unter dem Bild).

Der .. kleine" Tastenblock:

- → aus der Adresseingabe FAHR EIN Wechsel in den Betriebszustand FAHR, oder Wechsel zwischen Fahrzeugen innerhalb FAHR.
- → Wechsel zw. Fahrzeugen innerhalb FAHR. oder Übernahme eines Fahrzeugs von einem anderen Fahrpult.
- → Umschaltung zwischen Traktionsloks, oder Zuordnen einer Traktion bzw. Entfernen aus der Traktion
- → Wechsel und Rückwechsel in/aus Betriebszustand WEI
- (Clear) → Löschen von Fahrzeugen aus RüF u.a.

 Bildschirm FAHR alternative Darstellung - mit großem Bild:

Die gemessene "echte" Geschwindigkeit wird aus dem Fahrzeug zurückgemeldet: außerdem wird die Quote der erfolgreichen DCC Pakete / RailCom Quittungen angezeigt.

 Bildschirm FAHR f
ür Lok in Traktion mit Auswahlliste.

Für Mehrfachtraktionen werden die beteiligten Fahrzeuge aus einer Liste ausaewählt.

Das Fahrpult ist aerade im Funkbetrieb (Feldstärkeanzeige durch Antennensymbol oben

"RüF" & Engine Database, Help, MX32 CONF

◀ Bildschirm FAHR mit RüF Im "Rückholspeicher FAHR' (einer Art Favoritenliste) werden iene Adressen bereit gehalten, die zuvor aktiv ("Vorderarund") waren. Der Rückholspeicher kann per Scroll-Rad durchsucht werden. um Adressen in den Vordergrund zu holen.

Mani	з	T1	0 🚟
BR 86	86	T1	0 🚟
BR 10, Blau	101	FT(2)	543 🚟
BR 10,Rot	100	FT(2)	543 💷
Krolodil	4711		424
Bay Mallet	2044		44
MU Roco BR 11 >NEU<	110	FS	688 🚟

◀ Bildschirm FAHR RÜF

Die Vollbilddarstelluna des RüF bietet unter der Zeile >NEU< eine praktische Alternative zur Eingabe neuer Fahrzeuaadressen. Bei Löschung eines Fahrzeuas aus dem RüF bleibt dieses in der Obiekt-Datenbank erhalten.

◀ ObjectDB, Fahrzeuge

die Eintragungen werden mit verschiedenen Anaaben in der rechten Spalte daraestellt: Zuaehöriakeit zu Gruppe, Traktion. Geschwindigkeit, u.a. aus der Obiekt-DatenBank kann direkt aktiviert werden (wie aus dem RüF).

PULT CONF. Stopp-Bedienung

Das STOPP & AUS System bietet diverse Varianten, beispielsweise kann die S-Taste wahlweise Einzelstopp oder SSP (Sammelstopp) auslösen, und natürlich kann gewählt werden welcher Schienenausgang anzusprechen ist.

Der "E-Bildschirm" FAHR oder zum Eintritt in die Decoder-Programmier-

prozeduren, zur Einstellung der "GUI" (der Bildschirmdarstellung) des aktuellen Fahrzeugs, zur Bearbeitung der ZIMO Systemprodukte (auch dieses Gerätes selbst - PULT CONF). (E+) ... F-Taste, MN-Taste, 1 ... 0 Zifferntasten E- OP PROG - Programmieren am Hauptgleis MN - SERV PROG ... am Pogrammiergleis 1- FUMZ 2- TACHO 3-1 04/28.4 Held 4 - BILD 5 - FUSY 6 - OhertDB 0 - PULT 9 - SYSFolgende "E-Prozeduren" folgen den Zifferntasten: 1 - FUMZ (GUI für Fahrzeug): Anzahl der Funktione 8 (F0 .. F8), 12 (.. F12), 20 (.. F20), oder 28 (.. F28), die dargestellt und durch DCC-Befehle ausgesende werden sollen. Aktivieren des alten LGB-Pulsketter verfahrens; System-gesteuerte Anfahr/Bremszeite (AZ, BZ, ABK), Hier KEIN Decoder-Programmieren

2 - TACHO (GUI für Fahrzeug) Design: Art und Farbe der Tacho-Scheibe Vmax: Höchstgeschwindigkeit in km/h, diese bestimmt auch den Bereich der Tacho-Skala. Re: Rangiergeschwindigkeit, Rangier-Tacho Nachlauf: simuliert Lok-Beschleunigung/-Bremsen Geschwindigkeits-Fahrstufen-Diagramm (gültig. wenn KEINE Rückmeldung - kein Ra Geschwindigkeit aus Fahrst uss): drei Werte-Pa

Finer der HELP Bildschirme

Mit "Softkev I" kann iederzeit die zur Situation passende Help-Information angezeigt werden. Von dem ieweils aewünschten Help-File kann natürlich nur ein Ausschnitt in Display-Größe angezeigt werden, der Rest wird mittels Scroll-Rad durchlaufen.

Der "E-Bildschirm" erscheint nach Betätiauna der E-Taste (sofern diese nicht gerade als "Ende"-Taste fungiert): Er ist die zentrale Schaltstelle um von FAHR aus andere Betriebszustände oder Finstellfunktionen zu erreichen.

Scrolrad: Keine Funktion

MX32 Musterfahrz

Wippschalter: Feinregelung Animation: Keine

Musteradresse: 16383

RüF Anzahl: 128

Fang Methode: Einfangen

◀ ObjectDB Fahrzeuge

In der ObiektDB. Abteilung Fahrzeuaadressen sind über die RüF-Eintragungen (grün) hinaus weitere intern aespeicherte Adressen enthalten (blau); die Auflistung areift auch auf die zentrale Datenbank im MX10 zu und zeiat die Adressen an (arau).

Objektub	Rav	1.63 /	14:1	9:03
Filter: Fahrz	euge Löschen	Filter T	P End E	
Name			Adr	≣.
BR 10,Rot	100	T1	0 🚟	≣.
	10	FS	0 *****	
BR 10	101	T1	o 💷 –	
Krolodil	4711		0 💷 –	₫.
Mani		FT(2)	0 *****	Ξ.
BR 86	86	FT(2)	0 ::::.	
			0 🛲 🏅	
🕕 Help 🕕 Ob	j Funkt. 🕻	Aus I	RüF löschen	-0

Rev (Com 0.11 A) PULT CONF. Fahrbetrieb Weiter **V** Hauptiste E

Insgesamt können unter PULT CONF 10 unterschiedliche Parameterlisten aufgerufen werden, vor allem zur Anpassuna der Bedienweise an individuelle Wünsche, beispielsweise für den Betriebszustand FAHR.

Rev (Com 0.11 A ULT CONF Weiter VU Hauptiste E SSP Mode: San S-Taste Kurz: Einzelstopp S-Taste Lang: Schiene AUS Gilt für: Schiene 1+2 R-Taste: Einzelstopp ab Fahrstufe: 16

1 Help

16

PULT CONF

Stop & OFF, external control & and take over

STOPP Touch-Fenster

Durch <u>kurzen</u> Druck auf die <u>S-Taste</u> wird Einzelstopp (= "Emergency Stop") für das aktuelle Fahrzeug ausgelöst; gleichzeitig werden die **Touch**-Felder für SSP und AUS geöffnet.

Durch Touch auf ein Feld wird der Zustand ausgelöst.

SSP Zustand Touch-Felder

Durch Touch-Feld ODER direkt langen Druck auf die <u>S-Taste</u> wird SSP (= Sammelstopp) auf Schiene-1 ausgelöst. Über die Touch-Felder wird wieder eingeschaltet oder auch andere Stopp-Varianten eingeleitet. Blauer Pfeil-im-Kreis -> Ausblenden der Touch-Felder.

Die "ausgeblendete Version" der Touch-Felder ermöglicht die weitere Bedienung des aktiven Fahrzeugs. Dieses kann sich beispielsweise auf Schiene-2 bewegen; oder es werden jene Funktionen, die nicht von SSP betroffen sind, benützt.

STOPP Balken (statt Fenster)

UES (Überstrom) Fenster Bei Kurzschluss auf der Anlage (getrennt erkannt auf Schiene-1 und -2) wird ein STOPP-ähnliches Fenster geöffnet. Durch die Touch-Felder kann eingeschaltet oder auf SSP umgeschaltet, oder Schiene-2 ausgeschaltet werden.

"Adresse vergeben" Fenster Die Aktivierung einer Fahrzeugadresse, die bereits auf einem anderen Fahrpult im Vordergund ist wird durch dieses Fenster zunächst verhindert; eine Übernahme ist durch die U-Taste möglich: dann geht das andere Fahrpult in "Fremdsteuerung".

 Image: second second

Fremdsteuerung" Balken

Es wird passiv mitgelesen, wie das Fahrzeug von einem anderen ZIMO Fahrpult aus gesteuert wird. Dies geschieht nach Ausblenden des "Adresse vergeben" Fensters oder durch die erzwungene Übernahme (U-Taste) durch das andere Pult.

"Roco App Z21" Balken Die Steuerung dieser Adresse wurde über WLAN von einem Tablet oder Smartphone aus mit einem Roco Z21 Steuerpult oder einer Führerstands-App übernommen. Das Fahrpult MX32 zeigt alle Änderungen mit an, bis zur Rückübernahme.

"XPressNet" Balken" Über die "XNET" Buchse des Basisgerätes MX10 hat ein XPressNet Gerät die Steuerung des Fahrzeugs übernommen, beispielsweise das "DiMax Navigator" (selbst ein Funkgerät, dessen Empfänger mit der XNET Buchse verbunden ist)

◀ "ESTWGJ" Balken

Typischerweise über die LAN-Buchse des MX10 (manchmal auch über USB client) greifen Stellwerksprogramme wie ESTWGJ, STP oder Windigipet auf Züge (Adressen) zu.

MX32 cable & RF / Service Mode & Operational Mode

 Fahrpult im Kabelbetrieb, nach Abziehen des Kabels

Das "Power off - Standby" Fenster lässt den Anwender auswählen: Abschalten des Fahrpultes oder direkter Übergang in den Funkbetrieb (wenn es sich um die Funkausführung MX32FU handelt). A-Taste ►

Fahrpult im Funkbetrieb (mit Antennensymbol oben)

Entweder Einschalten des Funkfahrpultes aus dem Ruhezustand (A+E - Tasten) oder durch (praktisch unterbrechungsfreien) Übergang aus dem Kabelbetrieb durch Abziehen des Kabels und Bestätigung mit A-Taste.

◀ Funkbetrieb Nicht-Bedienung

Das "Nicht-Bedienung -Standby" Fenster fordert den Anwender zur Betätigung auf; ansonsten erfolgt zwecks Schonung des Akku's eine automatische Abschaltung.

SERV PROG 2030 ∨ 0.05 A Image: 12:5501 101 RaiCorr: Ja (B+D) Version: 30:23 Herstel: ZIMO Decoder: MX648 SN: 225:000:003:169 LC: 001:000:000:002 Decoder adressieren A CV-Programmieren *U Gefundene Adresse FAHR F ESCape E O Help

SERV PROG, Identifizieren Das am <u>Programmiergleis</u> befindliche Fahrzeug (= dessen Decoder) wurde "identifiziert", d.h. wichtige CVs ausgelesen und dargestellt. Danach steht Adressieren oder Programmieren zur Auswahl; das Identifizieren kann auch übersprungen werden.

SERV PROG, Adressieren Am Programmiergleis können die Decoder neu adressiert werden; lange ("erweiterte") Adressen (bis 10239) werden dabei in Klartext dargestellt. Der Programmiergleis-Ausgang wird sowohl für Lok-, als auch für Zubehördecoder verwendet.

SERV PROG 17.90 V 0.06 A BR 10, Blau FA FAHR U TBetr. Bin/Hex TP End E RailCom-Kon CV 3 ACK DCC-Konf 10 READ CV 29 Reg Abtast. CV 9 11ACK Reg PID CV 56 = 141ACK ZIMO Confi CV 112 31 ACK Messlücke CV 147 1(ALK xp Beschl CV 121 = 11RFAD CV Set kopieren
 Enfüge

◀ SERV PROG, CV Programmieren

Beliebig viele CVs können programmiert (mit ACK als Bestätigung) oder ausgelesen werden und werden gelistet. Die Weiterverarbeitung als CV-Sets (z.B. für andere ähnliche Fahrzeuge) ist möglich.

 OP PROG
 •••(•••
 000 A
 ES
 193521

 Image: State Stat

 OP PROG, Identifizieren
 Am <u>Hauptaleis</u> geschieht das Identifizieren (also das automatische Auslesen der betreffenden CVs) mit RailCom, daher dargestellt in Farbe Mangenta; sehr schnell, aber natürlich nur mit RailCom-fähigen Decodern.

MU ROCO I	3R 110			110
1. A	TBetr, Bin	/Hex		ind 💷
Sig Limit U	CV 52		27	ACK
Beschl. Zeit	CV 3		4	READ
Sig Limit L	CV 54		80	ACK
Sig. Beschl.	CV 49		0	READ
Bremszeit	CV 4		0	NO-R
	ςν	=	0	

OP PROG, CV Programmieren Das "Operational Mode Programming" zusammen mit RailCom zum Auslesen der CVs ist die zeitgemäße Methode um Decoder zu konfigurieren: ohne Programmiergleisund schnell (<1/10sec pro CV).</p>

ΛU	R	C	0	BR		1	0								10
								Т	Be	tr.	T	PE	SC	E	
u	Ma	ıрр	in	g ()h	n	e	Ve	rs	chi	ieb	ur	ng		
cν		12	11	10 !											
33															
34	FOr													1	
35															
36															
37															
38													24		
39															

◀ OP PROG, Themenprozeduren

Eine Reihe von Spezialprozeduren macht die Konfiguration übersichtlicher: NMRA Function Mapping, ZIMO Eingangs-Mapping, ZIMO "Schweizer Mapping".

Switches, Signals, Track segments at MX32

Die obere Hälfte entsprich dem Betriebszustand FAH in der unteren Hälfte wird ein Weichen-Panel (eigen lich "Zubehör-Panel") anaezeiat: ein solches enthö bis 30 Felder mit Weicher Signalsymbolen, ... (davo 9 sichtbar, zum Scrollen).

nel	WEI DEF	al Ref	🧀 0.13 A	0001
ht	WA Speic	hern Scroll	in Zeile 🔽	ESC E
IR, d nt-	1 gr 1 V-Gr 0 0 DCC Paar 10 0	2 gr 1 V-Gr 0 0 DCC Paar 10 1	3 gr 1 V-Gr 0 0 DCC Paar 10 2	Feld Symbol Drehung Format Adr Sub
ält n-, on	10.0 10.3 11.2 11.2			Help +Feld - Feld -

WEI Definitionsbildschirm Hier werden den einzelnen Feldern die aewünschten Symbole zugeordnet, sowie die Zubehöradresse(n), mit denen die betreffende Weiche / das betreffende Sianal angesteuert werden soll.

Bildschirm WEI. modifiziert

Es können beliebia viele "Panels" kreiert werden. beispielsweise auch solche mit Stellwerks-ähnlichen Symbolen (die Anordnung der Symbole in Stellwerksanordnung ist vorgesehen).

◀ ZUBEHÖR LISTE

Alle Zubehöradressen, die zu in Panels definierten Zubehörartikel gehören, werden automatisch aelistet: unabhänaia davon können natürlich weitere Adressen definiert werden. das Schalten geschieht über die Zifferntasten.

ZUB LISTE	15.87	V 0.14 A	ZS 🦷	12:34:1
A Edit C	Löschen	CV's TP	End E	-=
DCC [p]	13			-1
DCC [p]	14			-=
DCC [e]	15			1
DCC [p]	25			
MM1 [e]	293			
 MX8 [pp] 				
MX9	5 S			
MX10 ABA	Inp			
1) Help		🕕 Obj Fur	nkt.	

◀ ZUBEHÖR LISTE aroß

In Vollbilddarstelluna sind mehr Adressen gleichzeitig zu sehen: außerdem erfolat von hier (TP-Taste) der Zuaana zum "Operational mode Programming" der Zubehördecoder und Maanetartikel-Module MX8.

MX8 CONF	15.87 V 0.15 A	12:35:36	
MX8 10			⋖ <i>K</i>
and the second second	and the second	End E	D
Schaltimpuls Zeit 1	CV 515 = 0	ACK	fi
Schaltimpuls Zeit 2	CV 516 = 1	NO-R	, a
Schaltimpuls Zeit 3	CV 517 = 0	NO-R	7
Schaltimpuls Zeit 4	CV 518 = 0	NO-R	<u> </u>
Aufglimmzeit	CV 546 = 0	NO-R	
Verzögerung	CV 547 = 0	NO-R	Ki A
Abglimmzeit	CV 548 = 0	NO-R	a
1) Help			

Configurationsbildschirm MX8

Die Einstelluna der Parameter ür MX8-Module ist gleichrtia aestaltet wie für ubehördecoder. obwohl 1X8 nicht über die Schiene ommuniziert. sondern über en CAN-Bus.

MX9 Liste 19.10 V 0.20 A Select TP CV's Art | End E Help II Neu Adressieren

 MX9 Liste (Gleisabschnitte) In der Hauptliste der Gleisabschnitts-Module MX9 werden die Besetztzustände und HLU-Zustände für alle 16 angeschlossenen Gleisabschnitte dargestellt. Von hier aus besteht auch Zugang zur Konfiguration der Module MX9.

A Select	TPICV's Art 1	End E	5
6	Schlene AUS	0	
9	[UH] Ultralangsam [U]	23	
12	[LU] Langsam [L]	4 5	
28 40	[FL] Fahrt [F]	6 7	

Einstellung HLU

Von der MX9 Liste aus können auch die HLU-Zustände für die einzelnen Gleisabschnitte umgeschaltet werden. Dies ist vor allem für Testmaßnahmen relevant, während die normale Ansteuerung von Stellwerks-Programmen aus erfolgt.

ZIMO Zuanummernerkennuna

Auf diesem Bildschirm werden auch Fahrzeugadressen anaezeiat. die im Bereich des Gleisabschnitts-Moduls erkannt werden. zusammen mit den jeweiligen Nummern der Gleisabschnitts-Ausgänge.

Stationary-Segement-Modul Set Fine or gu ati

Stationonary Segments

gibt es in mannigfacher Form auf einer Modellbahnanlage neben dem rollenden Material, vor allem Weichen, Signale, Rückmelder vom Gleis, wie Besetzt- oder RailCom-Melder. Alle diese Einrichtungen müssen ebenso wie die Züge gesteuert und ausgewertet werden.

Dies wurde in der "Vor-StEin-zeitlichen" Modellbahnlandschaft durch eine Vielzahl unterschiedlicher Elektronik-Module realisiert, meist in eher kleinen Einheiten, typischerweise als 4-fach Weichendecoder, 4-fach oder 8-fach Besetztmelder, usw.

ZIMO hat ein Konzept ausgearbeitet - auch in der Tradition der MX8- und MX9-Module - welches **die Belange ALLER stationären Einrichtungen** zusammenfasst, eben den **St**ationär-**Ein**richtungs-Modul **StEin**. Dieses Konzept erleichtert die Installation und Inbetriebnahme, ermöglicht eine komfortable Überwachung der Steuerungstechnik selbst und erleichtert die Fehlersuche.

Ein "StEin" ist mehr als viele "Steinchen". "StEin" ist einerseits (2018) die Bezeichnung des *STEIN88V* und dessen Teilbestückung *...80G*, aber auch der Generalname für alle zukünftigen ZIMO Stationär-Einrichtungs-Module.

Die Highlights der "StEin"-Technik

Die HLU "signalabhängige Zugbeeinflussung" ist eine Spezialität mit 35-jähriger Geschichte, oft nachgeahmt und nie erreicht. Die 6 Speed Limits (einschließlich Halt) bremsen jede Lok, die mit passendem Decoder ausgerüstet ist, zuverlässig auf die Strecken-Höchstgeschwindigkeit ab oder stoppen sie.

Gleise ohne Spannungsabfall, einstellbare Besetzterkennung Durch präzise Strommessung, ohne die sonst üblichen Dioden (an denen ein Teil der Fahrspannung verheizt wird), wird der Besetztzustand jedes Gleisabschnitts bestimmt. Die Schwelle ist individuell ab 1 mA in feinen Schritten einstellbar; überdies gibt es eine Generalumschaltung zwischen Normal- (trockenem) und Feuchtoder Nassbetrieb (vor allem für das Freiland).

Komplette RailCom-Detektion (Channel 1 & Channel 2) -

Die vollen RailCom-Nachrichten aus den Zügen werden im "StEin" ausgewertet (und nicht nur die Adresse des Decodersalso Channel 1, wie anderswo üblich) und zur Zentrale über den CAN-Bus weitergeleitet. Das verbessert die Übermittlungssicherheit, weil es am einzelnen Gleisabschnitt kaum Störungen gibt.

Weichenantriebe und -rückmeldungen aller Art – Spulen, Motor oder Servo: An "StEin" oder "StEin"-Erweiterungsplatinen werden die Antriebe angeschlossen, zahlreiche Parameter zur optimalen Einstellung stehen zur Verfügung. Positionsmeldung durch Endabschaltung oder unabhängige Stellungskontakte.

Signalplatinen am I²C-Bus – Signale jeglicher Bauart werden an den "IQC" - Platinen angeschlossen, die vorzugsweise in unmittelbarer Nähe angebracht werden. Diese haben je 16 LED-Ausgänge. Die Herstellungskosten und Preise sind relativ niedrig. unterscheidet sich prinzipiell von der "adressorientierten Konfiguration", wie sie "Vor-StEin-zeitlich" durchgehend angewandt wurde (die Adressen bildeten das Ordnungsprinzip, die zu steuernde Einrichtung, z.B. eine Weiche, wurde durch CVs beschrieben).

Im StEin-Modul wird hingegen das "Objekt", also die Weiche, der Gleisabschnitt, oder das Signal, in den Mittelpunkt gestellt: für jedes Objekt gibt es eine eigene **Objektzeile** (also eine Eintragung) in einem Parameter-Sheet.

Das **Parameter-Sheet** ist eine Tabelle aus Objektzeilen, die offline am Computer erstellt wird und danach in den StEin-Modul (oder in die StEin-Module der Anlage) geladen wird. Es können auch mehrere sich ergänzende Parameter-Sheets erstellt und hintereinander geladen werden, wenn dies übersichtlicher erscheint. Oft wird zunächst StEin-intern teilautomatisch ein Parameter-Sheet erzeugt und zum Modifizieren zum Computer übermittelt.

Jede Objektzeile enthält **Parameter** für das Objekt; welche das jeweils sind, hängt von der Art des Objekts (Weiche, Gleisabschnitt, usw.) ab. Immer dabei ist aber (zumindest) ein Anschlusspunkt des Objekts am StEin; im Fall einer Weiche die Nummer des Weichenausgangs, der übrigens nicht unbedingt am "eigenen" StEin (wo die Objektzeile geladen wird) legen muss.

Ein spezieller Parameter eines Objektes ist die (optional zu vergebende) **systemweite Objektnummer**, beispielsweise also eine systemweite Weichennummer, mit der ein Stellwerksprogramm das Objekt, z.B. die Weiche ansteuern und abfragen kann, ohne Kenntnis über den Anschlussort haben zu müssen.

Anschluss (Stiftleiste) für Erweiterunasplatine 1

Buchse für USB-Stick zum Software-Update und zum Laden/Sichern der Konfigurationsdaten

2 x CAN-Buchse zur Verbindung mit der Digitalzentrale MX10 (auf diesem ist nur der CAN-Bus auf der *Rück-seite zu verwenden!*) und zum nächsten Modul

Nur wenn ANDERES Basisgerät als MX10: Schiene zur DCC-Sync

Versorgung mit Fahrspannung und Zubehörspannung: NICHT Ausgang "Schiene" des MX10, sondern "DC out" Anschüsse (oder eigene Netzgeräte, max. 24 V)

Anschluss (Stiftleiste) für Erweiterungsplatine 2

l²C - Bus zu den Sianalplatine

Display für Modulnummer und lokale Bedienung (5 Tasten oben), Anzeigen (5er-LED-Gruppe) für Weichenschalten u.a.

Hilfsspannungen 5V und Zubehör.

Ausgänge für 8 Weichen (Spulen, Motor, EPL) oder 16 Einzelverbraucher (z.B. Entkuppler)

16 Einaänae und LED-Indikatoren für Gleiskontakte, Lichtschranken, Weichenstellungskontakte u.ä.

Ausgänge zu den 8 Gleisabschnitten, jeweils 2 "P-Pole" und gemeinsamer N-Anschluss" auf Dreifachklemme, pro Abschnitt: HLU Indikator (rot/qelb Schattierungen/qrün), Besetztmelder (gelb), Kurzschluss-Indikator (blau)

Die "HLU" - Technik - auch bekannt unter "signalabhängige Zugbeeinflussung" und "ortsabhängige Funktionsbeeinflussung" ist in ZIMO Decodern *) und ZIMO Digitalsystemen integriert.

DCC ist bekanntlich das Kommunikationsprotokoll von der Digitalzentrale zu den Decodern auf der gesamten Anlage; jeder Befehl wird auf allen Gleisen verbreitet, er enthält eine Fahrzeugadresse, auf die (nur) der betreffende Decoder (Fahrzeug) reagiert.

HLU ist ein zweiter Kommunikationskanal, und zwar von einer Elektronik-Einheit, die zwischen der Zentrale und einem isolierten Gleisabschnitt liegt, zu den am Gleisabschnitt befindlichen Decodern; HLU-Daten können sich von Gleisabschnitt zu Gleisabschnitt unterscheiden (z.B. bezüglich HLU-Stufen), sie haben KEINE Adresse und werden von jedem ZIMO Decoder *) gelesen. HLU-Daten wirken meistens als Befehle zum Anhalten der Züge oder zum Reduzieren der Geschwindigkeit auf eines von 5 HLU-Limits; HLU-Daten erreichen die Decoder praktisch verzögerungsfrei, weil sie ca. 100 Mal/sec ausgesandt werden.

An den Gleisabschnitts-Ausgängen des StEin werden, meist auf Befehl des Stellwerkprogramms (also Computers), jeweils eine der 7 "HLU-Stufen" angelegt. Beim Überfahren von Punktmeldern kann der StEin autonom HLU-Stufen umschalten.

Ähnlich wie das Basisgerät MX10 besitzt der StEin **hochwertige RailCom-Detektoren**, allerdings in 8-facher Ausführung (für jeden der 8 Gleisabschnitte).

Die Auswertung der Rückmeldungen aus den Fahrzeugen erlaubt beispielsweise, den Standort (Gleisabschnitt) eines Zuges auf Eingabegeräten und am Stellwerk anzuzeigen, oder auch die tatsächliche Anlagen-bezogene Fahrtrichtung "Ost-West".

"LZB" und "PZB"

Die Wirkungsweise von HLU im Sinne der "signalabhängigen Zugbeeinflussung", also dem Anhalten oder Limitieren der Geschwindigkeit auf Gleisabschnitten, entspricht der "LZB" (Linienzugbeeinflussung) beim Vorbild, wo die Kommunikation durch im Gleis verlegte Drahtschleifen geschieht. Aber nicht immer ist das Prinzip der "LZB" optimal, daher wird beim Vorbild wie in der ZIMO Steuerungtechnik alternativ oder

ergänzend auch **"PZB" (Punktförmige Zugbeeinflussung")** eingesetzt. Der StEin besitzt 16 Logik-Eingänge (Schalteingänge), die u.a. für Punktmelder wie Gleiskontakte oder Lichtschranken genutzt werden können.

*) Alle ZIMO Decoder und einige Decoder anderer Hersteller verstehen HLU.

The **5** Keys ...

damit der StEin <u>nicht nur</u> zusammen mit dem Computer "lebt".

Zur Inbetriebnahme und bei der Fehlersuche sollen möglichst viele Schaltvorgänge (Weichen, Signale) und Zustandsänderungen (HLU-Stufen, Besetztschwellen, ...) direkt am StEin ausgelöst werden können,.

Gleisabschnitte für reine "LZB" Überwachung/Steuerung:

Einteilung der Gleisabschnitte für zwei Bahnhofsgleise und Einstellung der HLU-Stufen, wenn eine Fahrstraße vom Einfahrtsignal (links) in das obere Bahnhofsgleis mit Halt vor dem Ausfahrtsignal aktiviert wird. Der Zug kommt also sukzessive von der mittleren Geschwindigkeitsstufe (L) in niedrige (U) bis zum Halt (H), also zum Anhalten.

"LZB" in Kombination mit **"PZB"** Elementen: Einsparung von Gleisabschnitten, indem einige davon durch Lichtschranken "unterteilt" werden, kostengünstig und genauere Haltepunkte. Dafür und auch für die Auswahl von Fertig-Konfigurationen oder Einstellung der Modulnummer dienen die **5 Tasten am StEin**.

Das Stellwersprogramm sorgt dafür, dass auch Schiebezüge (Lok hinten) richtig abbremsen und zum Stehen kommen, indem bei Erkennung der Zugspitze die vorausliegenden Gleisabschnitte automatisch auf die entsprechende HLU-Stufe gesetzt werden.

The **7** Steps ...

zur Inbetriebnahme einer (einfachen) "StEin-Anlage":

- 1- Anlagenplanung und Anschlussplanung: Einteilung der Gleisabschnitte, Positionierung der Punktmelder, Nummerierung der Gleisabschnitte und Punktmelder, sowie der Weichen und Signale (also aller "Objekte") zwecks späterer Verwendung als systemweite Objektnummern (Weichenummern, Gleisabschnittsnummern, usw.), Zuteilung der Objekte (Weichen, Gleisabschnitte, …) an die Anschlüsse der vorgesehenen StEin-Module (nach deren geplanten Modul-Nummern 1 … 99).
- 2 "Schnupperinstallation": Teilbereich der Anlage auswählen und verdrahten, d.h. Anschließen der Objekte (Weichen, Gleisabschnitte, …) an den StEin-Modulen dieses Bereichs, Einstellen der Modul-Nummern auf den StEin's mit Hilfe der "Tasten-Prozedur P" (mit den 5 Tasten und Display am StEin).
- 3 Auswahl der passenden Fertig-Konfigurationen aus dem in der Betriebsanleitung beschriebenen Angebot, welches in der Regel in jedem StEin-Modul bei Auslieferung zur Verfügung steht (z.B. typische HO-Gleisabschnitte an jedem der 8 Ausgänge oder Doppelspulenantriebe an den 8 Weichenausgängen). Die Auswahl und Aktivierung einer gewünschten Fertig-Konfiguration erfolgt mit der "Tasten-Prozedur 3".

HINWEIS: natürlich können die beschriebenen Schritte 2 und 3 auch in umgekehrter Reihenfolge ausgeführt werden.

4 - Lokaler Versuchsbetrieb: noch ohne Computer, und sogar noch ohne Verwendung der ZIMO Fahrpulte zum Steuern und Abfragen können durch die "Tasten-Prozeduren P und L" sowie diversen LEDs Weichen und Signallämpchen geschaltet werden, die HLU-Wirkung, die Besetzterkennungen und RailCom auf den Gleisabschnitten getestet werden. Damit kann einerseits die Richtigkeit der Anschlüsse verifiziert werden, und anderseits auch die Zweckmäßigkeit der Objekt-Parameter, die aus den Fertig-Konfigurationen kommen (Schwellen für Besetzterkennung und Überstrom, Schaltzeiten, u.v.a.). Das wiederum zeigt, ob die Konfiguration passend ist, oder ob eigene Parameter-Sheets (anstelle der fertigen) angelegt werdenmüssen.

- 5 Versuchsbetrieb über das Stellwerksprogramm (Computer): Weichen und (zumindest einige) Fahrstraßen des "Schnupperbereichs" im Stellwerk anlegen; dabei werden zunächst zum Ansprechen der StEin-Objekte (also der Weichen, Gleisabschnitte, Punktmelder, Signale, ..) deren Anschlusspunkte an den StEin-Modulen verwendet, die zusammen mit den jeweiligen Modulnummern die automatisch vergebenen systemweiten Objektnummern bilden.
- 6 Vergabe der systemweiten Objektnummern (zu empfehlen): Dieser Schritt kann auch früher oder später in der Abfolge vorgenommen werden (oder gar nicht, weil nicht obligat).

Die aktuell im StEin befindliche Konfiguration wird auf USB-Stick ausgelesen, am Computer in ein Excel-Sheet geladen, wo die bisherigen automatisch vergebenen systemweiten Objektnummern (aus Modul- und Anschlussnummern zusammengesetzt) durch selbst-gewählte Nummern (siehe Punkt 1 - Anlagenplanung) ersetzt werden können. Die so modifizierte Konfiguration wird wieder in den StEin geladen.

Natürlich können - wenn zeckmäßig - im Excel-Sheet auch andere Parameter geändert werden, bevor das Laden in StEin stattfindet.

7- Komplettierung auf volle Anlage und iterative Optimierung.

Parameter-Sheets ...

als Mittel zur Konfiguration von kleinen, großen, einfachen, komplexen, ... Anlagen

StEin ist anders ...

Konfiguration durch Parameter-Sheets

Überwiegend werden StEin-Module zusammen mit Stellwerks-Software verwendet (ESTWGJ, STP, ...); auf den ersten Blick nicht grundsätzlich anders als alle Produkte aus der langen Liste von Rückmeldern und Zubehör-Modulen verschiedenster Hersteller.

Die Aufgabenteilung zwischen dem StEin und der Computer-Software ist jedoch durch den **objektorientierten Ansatz** eine andere: es steckt **mehr Intelligenz und Information** in den **StEin-Modulen** als anderswo üblich, und die Software am Computer kann sich auf übergeordnete Angelegenheiten beschränken und konzentrieren:

Ein Beispiel dazu an Hand der Weichen einer Anlage: im herkömmlichen Ansatz (also NICHT mit StEin) wird im Stellwerksprogramm per Eingabemaske für jede Weiche die Adresse des Zubehör-Decoders und Parameter wie die Schaltzeit definiert. Für die StEin-basierte Anlage werden hingegen unter Vergabe von systemweiten Weichennummern für die einzelnen Weichen die Anschlusspunkte, Antriebsarten, Arten der Rückmeldung, Schaltzeiten, u.a. in den StEin-Modulen selbst (genauer: in der Gesamtheit der Module) definiert; das Stellwerksprogramm kommuniziert jeweils nur über die systemweite Weichennummer (= Objektnummer), braucht aber nichts über Antriebsart (Spulen, Motor, Servo) oder Ansteuerungsdetails zu wissen. Die **Parameter für die Objekte** bilden **Objektzeilen**, sie werden **offline tabellarisch erfasst** (in **"Parameter-Sheets"**, aktuell als Excel-Tabellen; später könnten auch andere Datenbank-Tools zum Einsatz kommen. Dies mag für den "Eingabemaskentrainierten" Anwender ungewohnt sein, ist aber besonders für größere Anwendungen sehr übersichtlich und bequem zu editieren und ist vor allem änderungsfreundlich. Ein großer Vorzug der Tabellen-Struktur ist auch das einfache und sichere nachträgliche Einbringen von neuen "StEin-Features", ohne dass im Stellwerk mit CVs hantiert werden muss.

Ein Beispiel dazu: wenn sich einige Weichenantriebe "zickig" benehmen und vielleicht irgendwann eine neue StEin-Software zur Problemlösung verfügbar würde, wäre das Anpassen (Hinzufügen Parameter) und Testen der betroffenen Objekte (Weichen) in der Tabelle sehr rasch möglich, ohne zahlreiche Eingabefenster zu öffnen).

Das **unten abgebildete Parameter-Sheet** zeigt ein beispielhaftes (nicht unbedingt realitätsnahes) Parameter-Sheet für Weichen, wo jedes Objekt (= Weiche) seine eigenen Werte für die Objektvorgegebenen Parameter hat. Hier gibt es neben den Selbstverständlichkeiten wie Antriebsart und Umlaufzeit auch Angaben zu Stellungs-Testimpulsen, Umlaufkontrolle, oder Zwangsschalt-Kontakten.

OBJKL	OBJTYP	GASYSNR	BEFORM	HLUFIX	PUFFIX	FUNFIX	P
GA	1	350	0	4	F/H	0	
GA	1	351	3	0	0	0	
GA	1	352	3	0	F/H	0	

Das **oben abgebildete Parameter-Sheet** bezieht sich auf Gleisabschnitte: dort werden u.a. verschiedene Besetztmeldeschwellen sowie Überstrom- und Kurzschlusswerte definiert, wobei im Prinzip auch hier jedes Objekt (= Gleisabschnitt) anders sein kann.

Alle Objekte einer Anlage (Weichen, Gleisabschnitte, Kehrschleifen, Signal, u.a.) werden letztendlich in solchen Tabellen (Sheets) erfasst. Die Stellwerkssoftware greift auf die Objekte zu, vorzugsweise per Objektklasse und "systemweiter Objektnummer", und führt die für die jeweilige Objektklasse vorgesehenen Operationen aus,

Beispielsweise: Weiche nach rechts, Weichenstellung abfragen, Gleisabschnitt auf L (als HLU Limit) setzen und automatischen Wechsel auf H bei Überfahren der Lichtschranke beauftragen, Gleisabschnitt Besetztzustand und Zugnummern (Fahrzeugadressen) abfragen.

OBJKL	OBJTYP	WEISYSNR	ANTRART	POSILOG	SCHIMPZT	SCHIMPPWM	REDAUPWM	SERVPOS1	SERVPOS2	SERVUMLAU	STELLERK	TSTIMPLNG	TSTIMPINV	TSTIMPSPA	ZWAKOREF	HERZPOL	WM UMLA	MINAMP UMLAM	AXAMP	UMLAMINZT UMLAMAXZ	APUANTR	APUSTEKO	APUZWAKO	ANPUHERZPOL
WEI	1	20	1	1	100 ms	100%	0	0	0	0	1	1 ms	1000 ms	0	0		0	0	0	0 0	35.1	0	35.1	0
WEI	1	21	1	2	200 ms	80%	0	0	0	0	1	0,5 ms	2000 ms	0	1		0	0	0	0 0	35.3	0	35.3	0
WEI	1	22	0	3	400 ms	60%	10%	0	0	0	0	0	0	0	0	30%	85	0	0	0 0	0	0	0	35.5

OSFIX	GLEINF	BESMNOR	BESMFEU	BESMNAS	GKMINZT	GKPARAM UESLAMP	UESLAZT	UESLEZT	UESLEAZ UESSAMP	UESSAZT	UESSEZT	UESSEAZ	ANSPRMX9	APUGA	APUGAV	APUGK1	APUGK2
0	0	1 mA	20 mA	50 mA	50 ms	0 3000 mA	5000 ms	2000 ms	5 5000 mA	3000 ms	5000 ms	20	10,3A	35.1	0	35.12	0
0	0	10 mA	50 mA	100 mA	50 ms	0 1000 mA	500 ms	1000 ms	10 3000 mA	1000 ms	3000 ms	5	10,3B	35.2	0	0	0
0	0	20 mA	100 mA	200 mA	100 ms	0 5000 mA	2000 ms	2000 ms	3 6000 mA	5000 ms	5000 ms	5	0	35.3	0	35.13	0

Mehr Übersicht durch TYP-Objekte

Die totale Variabiltät (jede Weiche und jeder Gleisabschnitt mit eigenen Parametern) wird in der praktischen Anwendung nicht wirklich gebraucht. Daher können in der Praxis "TYP-Objekte" genutzt werden, also Vorlagen für "echte" Objekte, die für typische Anwendungsfälle bereits im StEin werksseitig vorgespeichert sind oder in Parameter-Sheets erstellt werden.

Beispielsweise könnte es auf einer Anlage 100 Weichen geben, aber nur 3 verschiedene Antriebsarten (Doppelspulen, langsamer Motor, schneller Motor). Dann wird es zweckmäßiger Weise 3 WEITYP-Objekte geben (vorgegebene und/oder selbst-erstellte) mit allen Angaben für die betreffenden Antriebe. Die 100 "echten" WEI-Objekte, von denen jedes auf eines der 3 TYP-Objekte Bezug nimmt, d.h. dessen Parameter übernimmt, enthalten nur noch die Anschlusspunkt der Antriebe, die naturgemäß für jede Weiche andere sind. Besonders wichtig ist diese Methode der TYP-Objekte für Signale ... aber das **unten abgebildete Parameter-Sheet** bezieht sich der Einfachkeit halber auf Weichen.

Schnellstart durch Fertig-Konfigurationen

Wenn es um schnellste Inbetriebnahme geht, sind die "Fertigkonfigurationen" das Mittel der Wahl: entweder die im neuen Modul bereits aktivierte oder eine aus den im Speicher zur Verfügung stehenden ausgewählte. Eine solche Fertig-Konfiguration enthält beispielsweise die kompletten Parametersätze (Besetztmelde-, Überstrom-Schwellen, u.a.) für die 8 anschließbaren Gleisabschnitte, wie sie für eine typische HO-Anwendung zweckmäßig sein könnten. Ebenso gibt es Fertig-Konfigurationen für Weichen mit Doppelspulen-Technik,

Motoren, EPL, Servo, usw. und weitere für diverse Signalsysteme (z.B. HV-Signale), die jeweils zusätzlich zu den Gleisabschnitten aktiviert werden können.

Nun	nmer und Na	me Inhaltsbeschreibung der Fertig-Konfiguration Schaltimpuls-/U	Jmlaufzeit
1	DSA	8 Doppelspulenweichen mit Endabschaltung	0,2 sec
2	DSN	8 Doppelspulenweichen ohne Endabschaltung	0,2 sec
3	MWA	8 Motorweichen mit Endabschaltung	3 sec
4	MWN	8 Motorweichen (langsam laufend) mit Endabschaltung	5 sec
5	MWD	8 Motorweichen (für Dauerstrom)	0
6	EPN	8 EPL-Weichen ohne Endabschaltung	0,2 sec
7	SWA	8 Servo-Weichen mit Endabschaltung und Anschluss für Relais	3 sec
8	SWM	8 Servo-Weichen ohne Endabschaltung und Anschluss für Relais	3 sec

Durch die Fertig-Konfigurationen kann die erste Inbetriebnahme sehr rasch erfolgen. Natürlich können auch die durch Fertig-Konfigurationen generierten Objekte und deren Parameter genauso wie selbst geschriebene modifiziert werden.

OBJKL	WEITYP	WEISYSNR	ANTRART	POSILOG	SCHIMPZT	SCHIMPPVM	REDAUPVM	SERVPOS1	SERVPOS2	SERVUMLAU	STELLERK	TSTIMPLNG	TSTIMPINV	TSTIMPSPA	ZWAKORE	F HERZPOLPVM	UMLAMINAME	UMLAMAXAMP	UMLAMINZT	UMLAMAXZT	APUANTR	APUSTEKO	APUZWAKO	APUHERZPOL
WEITYP	WEI-FE-DSE	0	DOSPU	1	100 ms	100%	0	0	0	0	1	1000 µs	1000 ms	0	(0%	C	0	0	0	0	0	0	0
WEI	WEI-FE-DSE	M-1	н	н				н									1				M.1			
WEI	WEI-FE-DSE	M-2		н				н													M.2			
WEI	WEI-FE-DSE	M-3																			M.3			
WEI	WEI-FE-DSE	M-4		н				н									1				M.4			
WEI	WEI-FE-DSE	M-5																			M.5			

^{*}Driving & Switching at the Computer

Mehrere Stellwerksprogramme unter Windows sind **"ready-to-use" mit ZIMO**, andere sind diesbezüglich in Vorbereitung. Drei von den Ersteren sind auf diesen Seiten aufgeführt.

Das ZIMO Digitalsystem (Digitalzentrale, Eingabegeräte, und die "peripheren" StEin-Module) unterstützen den Computer-Betrieb bereits im Vorfeld, indem die Funktion und der korrekte Anschluss der "stationären Einrichtungen", also der Weichen, Signale, Gleisabschnitte, usw. überprüft werden können, bevor noch der Computer verbunden und das eigentliche Stellwerk aufgebaut ist.

Die Verbindung zwischen Computer und dem MX10 kann über LAN (ersatzweise auch USB)) hergestellt werden.

Das Ethernet-Kabel wird von der LAN-Buchse auf der Rückseite des Basisgerätes MX10 entweder

- direkt zum Computer, oder

- falls gleichzeitig ein externer WLAN-Router, z.B. für eine App am Smartphone oder Tablet, verwendet wird, zu diesem Router geführt. Der Router wird also mit einem weiteren Ethernet-Kabel am Computer angeschlossen.

In den "Eigenschaften von Internetprotokollen (TCP/IPv4) muss zwingend eine **feste / statische IP-Adresse** eingerichtet werden, und zwar passend zur voreingestellten IP-Adresse des MX10: **192.168.1.100** (wenn "100" bereits durch ein Gerät am "LAN" belegt ist, ist ein anderer Wert möglich).

Im Stellwerksprogramm (z.B. ESTWGJ) wird die volle IP-Adresse des MX10, voreingestellt ist **192.168.1.145**, eingetragen.

ESTWGJ stellt die weitgehend vorbildgetreue Umsetzung von Spurplanstellwerken der Bundesbahnen in ein Modellstellwerk zur Steuerung digitaler Modellbahnen dar. Kernaufgabe des Programms sind die an der Sicherungstechnik des großen Vorbilds ausgerichteten Bedienungs- Überwachungs- und Auflösevorgänge beim Einstellen von Zug- und Rangierstraßen. ESTWGJ setzt keinerlei Programmierkenntnisse voraus. Die Daten der Anlage werden menügeführt mittels Editoren eingegeben, wobei das auf dem Bildschirm erzeugte Pult als Referenz für die meisten Eingaben dient.

Derzeit kann unter 4 unterschiedlichen Darstellungen für deutsche Stellwerkssysteme gewählt werden; neu ab V7 wird auch das Schweizer Dmo67 angeboten, das sowohl optisch, als auch funktionell eigenständig ist.

www.ESTWGJ.com

with **ZIMO** Partner Products

STP - Das Stellpult für Modellbahn-Profis

STP arbeitet zur Steuerung der Anlage mit den Komponenten des ZIMO Digitalsystems zusammen. Insbesondere der Einsatz der ZIMO "Signalabhängigen Zugbeeinflussung" erlaubt eine Gleisabschnitts-bezogene Steuerung, welche sowohl auf vom Fahrgerät als auch vom Computer gesteuerte Züge wirkt und so ein Maximum an Flexibilität und Sicherheit bietet, was die

utahrgleis: therean C muz C go uz Schießer Stellpult in EStW-Darstellung Drehscheiben-Steuerung

Kombination aus manuellem und automatischem Betrieb der Anlage ohne Einschränkungen erlaubt. Die Darstellung und Bedienung von STP ist dem Vorbild angeglichen. Der Betrieb ist auch auf (Windowskompatiblen) Tablet-PCs mit Touchscreen möglich.

www.stp-software.at

- 0 ×

Das professionelle und anwenderfreundliche Komplettprogramm löst alle Steuerungsaufgaben auf Anlagen beliebiger Größenordnung. Nach STP und ETWGJ ist WIN-DIGIPET ein weiteres Programm, dass die ZIMO HLU-Technik nutzt.

ZIMO employees

Oswald Holub

Leitung

Entwicklung

Entwicklung - Test - Sounddesign

Manoj Abraham Gotho Griesmeier Manuel Herlt Manojela Stanojevic Thomas Mader

Marijana Lazarevic

Michael Schwarzer Stephan Lampert Stephan Zimmerer Michael Rubitschka

Viktor Obrist-Wilde

Quang Nguyen

Peter Ostatnik

Impressum

Distributor

Nevada Hobby Distributors

1325 Airmotive Way, STE 330 Reno, NV 89502 USA

www.nevadahobbydistributors.com info@nevadahobbydistributors.com

t +1 (508) 603-1085 f +1 (508) 464-6203 Für den Inhalt verantwortlich: Peter W. Ziegler Änderungen und Irrtümer vorbehalten:

einige beschriebene Features sind erst in Planung. RailCom ist ein Markenzeichen der Lenz GmbH.

Tan Hung Huynh

Michael Che

Samuel Pechlahner

Steven Beboso

Produktion - Einkauf

Vincent Hamp

Oi Van Beranek-Che Prokuristin Leitung Vertrieb

Sven Fuchs

Peter W. Ziegler

Geschäftsführer

Senad Topcic Manfred Brückner Stephan Hubinger Alexander Mayer

Verkauf - Vertrieb - Verwaltung - Dokumentation - Kundendienst - Reparaturen - Testmittel

Ferenc Gvöre

